1,007 research outputs found

    Truthful Facility Assignment with Resource Augmentation: An Exact Analysis of Serial Dictatorship

    Full text link
    We study the truthful facility assignment problem, where a set of agents with private most-preferred points on a metric space are assigned to facilities that lie on the metric space, under capacity constraints on the facilities. The goal is to produce such an assignment that minimizes the social cost, i.e., the total distance between the most-preferred points of the agents and their corresponding facilities in the assignment, under the constraint of truthfulness, which ensures that agents do not misreport their most-preferred points. We propose a resource augmentation framework, where a truthful mechanism is evaluated by its worst-case performance on an instance with enhanced facility capacities against the optimal mechanism on the same instance with the original capacities. We study a very well-known mechanism, Serial Dictatorship, and provide an exact analysis of its performance. Although Serial Dictatorship is a purely combinatorial mechanism, our analysis uses linear programming; a linear program expresses its greedy nature as well as the structure of the input, and finds the input instance that enforces the mechanism have its worst-case performance. Bounding the objective of the linear program using duality arguments allows us to compute tight bounds on the approximation ratio. Among other results, we prove that Serial Dictatorship has approximation ratio g/(g2)g/(g-2) when the capacities are multiplied by any integer g3g \geq 3. Our results suggest that even a limited augmentation of the resources can have wondrous effects on the performance of the mechanism and in particular, the approximation ratio goes to 1 as the augmentation factor becomes large. We complement our results with bounds on the approximation ratio of Random Serial Dictatorship, the randomized version of Serial Dictatorship, when there is no resource augmentation

    Depth-Independent Lower bounds on the Communication Complexity of Read-Once Boolean Formulas

    Full text link
    We show lower bounds of Ω(n)\Omega(\sqrt{n}) and Ω(n1/4)\Omega(n^{1/4}) on the randomized and quantum communication complexity, respectively, of all nn-variable read-once Boolean formulas. Our results complement the recent lower bound of Ω(n/8d)\Omega(n/8^d) by Leonardos and Saks and Ω(n/2Ω(dlogd))\Omega(n/2^{\Omega(d\log d)}) by Jayram, Kopparty and Raghavendra for randomized communication complexity of read-once Boolean formulas with depth dd. We obtain our result by "embedding" either the Disjointness problem or its complement in any given read-once Boolean formula.Comment: 5 page

    Competitive Analysis for Two Variants of Online Metric Matching Problem

    Get PDF
    14th International Conference, COCOA 2020, Dallas, TX, USA, December 11–13, 2020

    Competitive Analysis for Two Variants of Online Metric Matching Problem

    Get PDF
    In this paper, we study two variants of the online metric matching problem. The first problem is the online metric matching problem where all the servers are placed at one of two positions in the metric space. We show that a simple greedy algorithm achieves the competitive ratio of 3 and give a matching lower bound. The second problem is the online facility assignment problem on a line, where servers have capacities, servers and requests are placed on 1-dimensional line, and the distances between any two consecutive servers are the same. We show lower bounds 1+61+ \sqrt{6} (>3.44948)(> 3.44948), 4+733\frac{4+\sqrt{73}}{3} (>4.18133)(>4.18133) and 133\frac{13}{3} (>4.33333)(>4.33333) on the competitive ratio when the numbers of servers are 3, 4 and 5, respectively.Comment: 12 pages. Update from the 1st version: The first author was added and Theorems 3, 4 and 5 were improve

    The chromatic discrepancy of graphs

    Get PDF
    For a proper vertex coloring cc of a graph GG, let φc(G)φc(G) denote the maximum, over all induced subgraphs HH of GG, the difference between the chromatic number χ(H)χ(H) and the number of colors used by cc to color HH. We define the chromatic discrepancy of a graph GG, denoted by φ(G)φ(G), to be the minimum φc(G)φc(G), over all proper colorings cc of GG. If HH is restricted to only connected induced subgraphs, we denote the corresponding parameter by View the MathML sourceφˆ(G). These parameters are aimed at studying graph colorings that use as few colors as possible in a graph and all its induced subgraphs. We study the parameters φ(G)φ(G) and View the MathML sourceφˆ(G) and obtain bounds on them. We obtain general bounds, as well as bounds for certain special classes of graphs including random graphs. We provide structural characterizations of graphs with φ(G)=0φ(G)=0 and graphs with View the MathML sourceφˆ(G)=0. We also show that computing these parameters is NP-hard

    Improved Quantum Communication Complexity Bounds for Disjointness and Equality

    Get PDF
    We prove new bounds on the quantum communication complexity of the disjointness and equality problems. For the case of exact and non-deterministic protocols we show that these complexities are all equal to n+1, the previous best lower bound being n/2. We show this by improving a general bound for non-deterministic protocols of de Wolf. We also give an O(sqrt{n}c^{log^* n})-qubit bounded-error protocol for disjointness, modifying and improving the earlier O(sqrt{n}log n) protocol of Buhrman, Cleve, and Wigderson, and prove an Omega(sqrt{n}) lower bound for a large class of protocols that includes the BCW-protocol as well as our new protocol.Comment: 11 pages LaTe

    Distributed Minimum Cut Approximation

    Full text link
    We study the problem of computing approximate minimum edge cuts by distributed algorithms. We use a standard synchronous message passing model where in each round, O(logn)O(\log n) bits can be transmitted over each edge (a.k.a. the CONGEST model). We present a distributed algorithm that, for any weighted graph and any ϵ(0,1)\epsilon \in (0, 1), with high probability finds a cut of size at most O(ϵ1λ)O(\epsilon^{-1}\lambda) in O(D)+O~(n1/2+ϵ)O(D) + \tilde{O}(n^{1/2 + \epsilon}) rounds, where λ\lambda is the size of the minimum cut. This algorithm is based on a simple approach for analyzing random edge sampling, which we call the random layering technique. In addition, we also present another distributed algorithm, which is based on a centralized algorithm due to Matula [SODA '93], that with high probability computes a cut of size at most (2+ϵ)λ(2+\epsilon)\lambda in O~((D+n)/ϵ5)\tilde{O}((D+\sqrt{n})/\epsilon^5) rounds for any ϵ>0\epsilon>0. The time complexities of both of these algorithms almost match the Ω~(D+n)\tilde{\Omega}(D + \sqrt{n}) lower bound of Das Sarma et al. [STOC '11], thus leading to an answer to an open question raised by Elkin [SIGACT-News '04] and Das Sarma et al. [STOC '11]. Furthermore, we also strengthen the lower bound of Das Sarma et al. by extending it to unweighted graphs. We show that the same lower bound also holds for unweighted multigraphs (or equivalently for weighted graphs in which O(wlogn)O(w\log n) bits can be transmitted in each round over an edge of weight ww), even if the diameter is D=O(logn)D=O(\log n). For unweighted simple graphs, we show that even for networks of diameter O~(1λnαλ)\tilde{O}(\frac{1}{\lambda}\cdot \sqrt{\frac{n}{\alpha\lambda}}), finding an α\alpha-approximate minimum cut in networks of edge connectivity λ\lambda or computing an α\alpha-approximation of the edge connectivity requires Ω~(D+nαλ)\tilde{\Omega}(D + \sqrt{\frac{n}{\alpha\lambda}}) rounds
    corecore